Symmetries of the Kadomtsev-Petviashvili equation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1993 J. Phys. A: Math. Gen. 264387
(http://iopscience.iop.org/0305-4470/26/17/043)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 01/06/2010 at 19:33

Please note that terms and conditions apply.

Symmetries of the Kadomtsev-Petviashvili equation

Sen-yue Lou
CCAST (World Laboratory), PO Box 8730, Beijing 100080, People's Republic of China Institute of Modern Physics, Ningbo Normal College, Ningbo, 315211, People's Republic of China \dagger and Institute of Theoretical Physics, Academia Sinica, PO Box 2735, Beijing 100080, People's Republic of China

Received 9 March 1993

Abstract

Generalized symmetries with arbitary functions of time t for the well known $2+1$-dimensional integrable model, Kadomtsev-Petviashvili ($\mathrm{k} \rho$) equation, are found by means of the extended mastersymmetry approach. Then an explicit and simple constructive formula for the symmetries of the KP equation is derived directly from the symmetry definition equation, without using complicated recursion operators. All the known symmetries appear as special cases of those obtained in this paper. The general infinitedimensional Lie algebra constituted by these symmetries is also given.

1. Introduction

In the past two decades, the discovery of soliton solutions for certain $1+$ 1 -dimensional nonlinear evolution equations with physical applications has aroused great interest and attention among physists and mathematicians [1]. One of the important developments is that nonlinear models such as the KdV and Liouville equations, in general possess many sets of infinitely many symmetries [2-6]. There exist different types of effective methods to obtain the symmetries of an evolution equation. One of them uses Lie algebras of mastersymmetries to obtain all commuting symmetries.

Fuchssteiner used mastersymmetries to get both the time-independent and timedependent symmetries of the Kadomtsev-Petviashvili (KP) equation [7]. In this paper, we modify the mastersymmetry method of [7] to give the more general symmetries of the KP equation and the infinite dimensional Lie algebra constructed by the generalized symmetries. Section 3 is devoted to presenting an explicit expression for all the symmetries obtained in section 2 . Section 4 is a summary and discussion.

2. Symmetries and Lie algebra of the KP equation

Fuchssteiner [7] pointed out that

$$
\begin{equation*}
G_{3} \equiv y^{2} \tag{1}
\end{equation*}
$$

is a mastersymmetry of degree three for the Kp equation

$$
\begin{equation*}
u_{x t}=\left(6 u u_{x}-u_{x x x}\right)_{x}-3 u_{y y} \equiv K_{2 x} \tag{2}
\end{equation*}
$$

\dagger Mailing address.
because

$$
\begin{equation*}
\left[\left[\left[G_{3}, K_{2}\right], K_{2}\right], K_{2}\right]=\left[\left[G_{2}, K_{2}\right], K_{2}\right]=\left[G_{1}, K_{2}\right]=108 K_{2} \tag{3}
\end{equation*}
$$

where the commutator $[A, B]$ is defined by

$$
\begin{equation*}
\left.[A, B]=\frac{\partial}{\partial \varepsilon}[A(u+\varepsilon B(u))-B(u+\varepsilon A(u))]\right]_{\varepsilon=0}=A^{\prime} B-B^{\prime} A \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
K_{2}=D_{x}^{-1} K_{2 x}=6 u u_{x}-u_{x x x}-3 D_{x}^{-1} u_{y y} \tag{5}
\end{equation*}
$$

with

$$
\begin{equation*}
D_{x}^{-1}=\int_{-\infty}^{x} \mathrm{~d} x \tag{6}
\end{equation*}
$$

being the inverse of the differential operator $D_{x}=\partial / \partial x$. Applying to a constant C, he defined the Lie algebraic meaning of D_{x}^{-1} by

$$
\begin{equation*}
D_{x}^{-1} C=x C \tag{7}
\end{equation*}
$$

However, in order to get the most general results, we should define the D_{x}^{-1} more generally as

$$
\begin{equation*}
D_{x}^{-1} C=x C+f(y, t), \tag{8}
\end{equation*}
$$

where f is an arbitary function of y and t.
Now we begin the calculation with the known seed symmetry K_{2} and the mastersymmetry $G_{3}=y^{2}$ as in [7], but with the definition (7) for D_{x}^{-1} replaced by (8). Explicit computation yields

$$
\begin{align*}
& G_{2}=\left[G_{3}, K_{2}\right]=-6 u_{x} y^{2}+6 x+f(y, t), \\
& G_{1}=\left[G_{2}, K_{2}\right]=-36\left(x u_{x}+2 u+2 y u_{y}\right)-6 f u_{x}+3 f_{y y} x+f_{1}(y, t) . \tag{9}
\end{align*}
$$

Finally, we have

$$
\begin{align*}
& {\left[G_{1}, K_{2}\right]=108 K_{2}-6 f_{y} u_{x}+f_{2}(y, t)-18\left(f_{y y} x u_{x}+2 f_{y} u_{y}+2 f_{y y} u\right)+(9 / 2) f_{y y y} x^{2}+3 f_{y y} x } \\
& \equiv 108 K_{2}+\sigma_{0} \tag{10}
\end{align*}
$$

where f, f_{1} and f_{2} are three integral functions which should be fixed from the symmetry definition equation of the Kp equation such that y^{2} is still a mastersymmetry of degree 3 when D_{x}^{-1} is given by (8). The symmetry definition equation of the KP reads

$$
\begin{equation*}
\sigma_{x t}=\left[\left(6 D_{x}^{2} u-D_{x}^{4}\right)-D_{y}^{2}\right] \sigma=K_{2 x}^{\prime} \sigma \tag{11}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\sigma_{t}=D_{f} \sigma=K_{2}^{\prime} \sigma=\left(6 D_{x} u-D_{x}^{3}-D_{x}^{-1} D_{y}^{2}\right) \sigma \tag{12}
\end{equation*}
$$

where D_{t} denotes the total t-derivative.
Substituting σ_{0} given in (10) into (11), we get a first generalized seed symmetry

$$
\begin{equation*}
K_{0}(h)=h(t) u_{x}+(1 / 6) h(t) \tag{13}
\end{equation*}
$$

with $f_{1 y}=f=f_{2 y}=0, h=-6 f_{1}(t), f_{2}=(1 / 6) \hat{h}=D_{t} h / 6$ and h being an arbitrary function
of t. When $h=1, K_{0}(h)$ reduces to the known $K_{0}(1)=K_{0}=u_{x}$, corresponding to the x-translation. Now using the known symmetry [7]

$$
K_{3}=4\left[4 u u_{y}+2 u_{x} D_{x}^{-1} u_{y}-D_{x}^{-2} u_{y y y}-u_{x y y}\right]
$$

and the generalized seed (13), we obtain

$$
\begin{equation*}
K_{1}(h)=(3 / 4)\left[K_{0}(f), K_{3}\right]=-2 h u_{y}+(1 / 3) \dot{h} y u_{x}+(1 / 18) \ddot{h} y . \tag{14}
\end{equation*}
$$

where $h=\dot{f}$ and an integral function has been fixed as $(1 / 18) \ddot{h} y$ such that $K_{1}(h)$ satisfies (11). $K_{1}(h)$ is the generalization of the known y-translation invariance $K_{1}(1)=K_{1}=-2 u_{y}$. Similarly

$$
\begin{align*}
K_{2}(h)=(3 / 4) & {\left[K_{1}(f), K_{3}\right] } \\
= & -h u_{t}-(2 / 3) \dot{h} y u_{y}-(1 / 3) \mathscr{h} x u_{x}+(1 / 18) \mathscr{h} y^{2} u_{x}-(2 / 3) \dot{h} u-(1 / 18) \ddot{h} x \\
& +(1 / 108) \ddot{h} y^{2},(h=\dot{f}) \tag{15}
\end{align*}
$$

and

$$
\begin{align*}
K_{3}(h)=(3 / 4)[& \left.K_{2}(f), K_{3}\right]=h K_{3}+(1 / 3) \dot{h}\left(y u_{x x x}+2 x u_{y}+4 D_{x}^{-1} u_{y}+3 y D_{x}^{-1} u_{y y}-6 y u_{x}\right) \\
& -(1 / 9) \ddot{h}\left(x y u_{x}+2 y u+y^{2} u_{y}\right)-(1 / 162) \ddot{h}\left(3 x y-y^{3} u_{y}\right) \\
& +(1 / 972) \dddot{h} y^{3}(h=\dot{f}) . \tag{16}
\end{align*}
$$

$K_{2}(h)$ is the generalization of the t-transiation invariance, $K_{2}(1)=K_{2}=-u_{t}$, while $K_{3}(h)$ is the generalization of the known time independent symmetry $K_{3}(1)=K_{3}$.

Finally, by means of the known time-independent symmetries $K_{n}[7]$ and generalized symmetry $K_{2}(h)$ or $K_{3}(h)$, we obtain all the generalizations of K_{n} :

$$
\begin{align*}
& K_{n}(h)=(3 /(n+1))\left|K_{2}(f), K_{n}\right| \tag{17}\\
= & (3 / n)\left[K_{3}(f), K_{n-3}\right] \quad(\dot{f}=h) . \tag{18}
\end{align*}
$$

It is interesting that when we take $h=t$ for $K_{3}(h)$, then the generalized symmetry $K_{3}(h)$ reduces to the known time-dependent (linear in t) symmetry
$K_{3}(t)=t K_{3}+(1 / 3)\left(y u_{x x x}+2 x u_{y}+4 D_{x}^{-1} u_{y}+3 y D_{x}^{-1} u_{y y}-6 y u_{x}\right) \equiv t K_{3}+\tau_{1,3}$
where $\tau_{1,3}$ is just the mastersymmetry given in ref. [7] (up to a constant factor). Then (18) reduces to the known results:

$$
\begin{equation*}
K_{n}(1)=K_{n}=(3 / n)\left[K_{3}(t), K_{n-1}\right]=(3 / n)\left[\tau_{1.3}, K_{n-1}\right] . \tag{20}
\end{equation*}
$$

After finishing the detailed calculations we can see that the generalized symmetries obtained here constitute also a closed infinite dimensional Lie algebra

$$
\begin{equation*}
\left[K_{n}\left(h_{1}\right), K_{m}\left(h_{2}\right)\right]=(1 / 3) K_{n+m-2}\left((m+1) \dot{h}_{1} h_{2}-(n+1) \dot{h}_{2} h_{1}\right) . \tag{21}
\end{equation*}
$$

Here we would like to present some special cases of (21) to demonstrate its correctness, instead of giving tedious concrete verification.
(1) $h=1$. In this special case, all the $K_{n}(h)$ reduce to the known symmetries [8] $K_{n}=K_{n}(1)$ which can be derived from the conserved quantities [9] that do not depend explicitly on the variables x, y and t. All of these quantities commute.
(2) $h=t$. In this case, all the symmetries $K_{n}(t) \equiv \tau_{n}$ are just the so-called 'new symmetries' or ' τ symmetries' that depend explicitly on the variables x, y and t. All of these types of symmetries constitute a Virasoro algebra

$$
\begin{equation*}
\left.\left[K_{n}(t), K_{m}(t)\right]=\left[\tau_{n}, \tau_{m}\right]=(1 / 3)(m-n) \tau_{n+m-2}, n, m>0\right) . \tag{22}
\end{equation*}
$$

(3) $h(t)=t^{m},(m \geqslant 1)$. This type of solutions is also known in the literatures [7, 11]. The algebra (21) is reduced to
$\left[K_{n}\left(t^{r}\right), K_{m}\left(t^{s}\right)\right]=(1 / 3)[r(m+1)-s(n+1)] K_{n+m-2}\left(t^{r+s-1}\right) \quad(n, m \geqslant 0, r, s \geqslant 1)(23)$
which was also given in [11]. In fact, it is quite natural to extend (23) to (21). If we restrict $h(t)$ to any analytical function then writing $h(t)$ in Taylor series form, one can prove (21) from (23) because (11) is linear.
(4) Let

$$
\begin{align*}
& K_{0}(h) \equiv Z(h)=h u_{x}+(1 / 6) \dot{h} \tag{24}\\
& K_{\jmath}(g) \equiv Y(g)=-2 g u_{y}+(1 / 3) \dot{g} y u+(1 / 18) \ddot{g} y \tag{25}
\end{align*}
$$

and

$$
\begin{align*}
K_{2}(f) \equiv X(f)= & -f u_{t}-(2 / 3) \dot{f} y u_{y}-(1 / 3) \dot{f} x u_{x}+(1 / 18) \dot{f} y^{2} u_{x}-(2 / 3) \dot{f} u-(1 / 18) \vec{f} x \\
& +(1 / 108) \dot{f} y^{2} \tag{26}
\end{align*}
$$

where h, g and f are three arbitary functions of t. Then we get an infinite-dimensional subaigebra of the KP equation from eq. (21):

$$
\begin{align*}
& {\left[Z\left(h_{1}\right), Z\left(h_{2}\right)\right]=0} \tag{27}\\
& {[Z(h), Y(g)]=0} \tag{28}\\
& {\left[Y\left(g_{1}\right), Y\left(g_{2}\right)\right]=(2 / 3) Z\left(\dot{g}_{1} g_{2}-\dot{g}_{2} g_{1}\right)} \tag{29}\\
& {[Y(g, X(f)]=(1 / 3) Y(3 \dot{g} f-2 \dot{f} g)} \tag{30}\\
& {[Z(h), X(f)]=(1 / 3) Z(3 h f-\dot{f} h)} \tag{31}\\
& {\left[X\left(f_{1}\right), X\left(f_{2}\right)\right]=X\left(\dot{f}_{1} f_{2}-\dot{f}_{2} f_{1}\right) .} \tag{32}
\end{align*}
$$

Using a REDUCE package, this subalgebra was first given by Schwarz [12] where $X(f), Y(g)$ and $Z(h)$ were expressed as the following totally equivalent forms

$$
\begin{gather*}
Z(h)=h(t) \frac{\partial}{\partial x}-(1 / 6) \dot{h} \frac{\partial}{\partial u} \tag{33}\\
Y(g)=2 g(t) \frac{\partial}{\partial y}+(1 / 3) \dot{g} y \frac{\partial}{\partial x}-(1 / 18) \dot{g} y \frac{\partial}{\partial u} \tag{34}\\
X(f)=-f(t) \frac{\partial}{\partial t}-(2 / 3) \dot{f} y \frac{\partial}{\partial y}-\left[(1 / 3) \dot{f} x-(1 / 18) f f_{y}\right] \frac{\partial}{\partial x} \\
+\left[(2 / 3) \dot{f} u+(1 / 18) \dot{f} x-(1 / 108) \dot{f} y^{2}\right] \frac{\partial}{\partial u} \tag{35}
\end{gather*}
$$

and the corresponding Lie product is charged as

$$
\begin{equation*}
[A, B]=A B-B A . \tag{36}
\end{equation*}
$$

More details of this algebra have been studied in [13]. Three general types of similarity solutions of the KP equation were obtained using this subalgebra [13].

Because the integral functions which should be fixed have been included in every high-order symmetry, to obtain the concrete form of $K_{n}(h)$ from (17) or (18) is still quite difficult. This is especially true for the integration functions, though they coincide with that obtained by [11] because they have to be determined directiy from the definition equation (11). We would like to give a simple and explicit formula to obtain $K_{n}(h)$.

3. A constructable formula for the symmetries of the kP equation

From equations (17) (or (18)) and (11) (or (12)), we know that the h (and its derivatives) dependence for $K_{n}(h)$ must be linear because (11) is linear in σ, equation (17) is linear in $h(=\dot{f})$ and h is an arbitrary function of t. Accordingly, we know that $K_{n}(h)$ can only have the form

$$
\begin{equation*}
K_{n}(h)=\sum_{k=0}^{n+1} h^{(n+1-k)} K_{n}[k] \tag{3}
\end{equation*}
$$

where $h^{(k)}=\left(D_{\mathrm{i}}^{k} h(t)\right), K_{n}|k|(k=0,1, \ldots n+1)$ are functions of x, y, u and its derivatives, but are not time-dependent explicitly. The explicit time dependence of $K_{n}(h)$ has been separated out in $h^{(n+1-k)}$.

Substituting (37) into the left side of the definition equation (11) directly, we have

$$
\begin{align*}
K_{n x}(k)= & \sum_{k=0}^{n+1} k^{(n+2-k)} K_{n x}[k]+\sum_{k=0}^{n+1} h^{(n+1-k)} K_{n x}[k] \\
& =\sum_{k=0}^{n+1} h^{(n+2-k)} K_{n x}[k]+\sum_{k=1}^{n+2} h^{(n+2-k)} K_{n x x}[k-1] \tag{38}
\end{align*}
$$

while the right-hand side of (11) now becomes

$$
\begin{equation*}
K_{2 x}^{\prime} K_{n}(h)=K_{2 x}^{\prime} \sum_{k=0}^{n+1} h^{(n+1-k)} K_{n}[k]=\sum_{k=1}^{n+2} h^{(n+2-k)} K_{2 x}^{\prime} K_{n}[k-1] . \tag{39}
\end{equation*}
$$

Because h is an arbitrary function of t, comparing the coefficients of $h^{(n+2-k)}$ of (38) and (39) we have

$$
\begin{equation*}
K_{x x}[0]=0 \tag{40}
\end{equation*}
$$

for $k=0$, which means

$$
\begin{equation*}
K_{n}[0]=g_{n}(y) \tag{41}
\end{equation*}
$$

is not only t-independent but also x - (and then u-) independent.
For $k=1,2, \ldots, n+1$, we have

$$
\begin{align*}
& K_{n x}[k]+K_{n x}[k-1]=K_{x}^{\prime} K_{n}[k-1] \tag{42}\\
& K_{n x}[k]=\left(K_{2 x}^{\prime}-D_{x} D_{t}\right) K_{n}[k-1] . \tag{43}
\end{align*}
$$

Solving (43) recursively yields

$$
\begin{align*}
K_{n}[k]= & D_{x}^{-1}\left(K_{2 x}^{\prime}-D_{x} D_{t}\right) K_{n}[k-1] \\
= & \left(K_{2}^{\prime}-D_{t}\right) K_{n}[k-1] \\
= & \left(K_{2}^{\prime}-D_{t}\right)^{2} K_{n}[k-2] \\
& \cdots \\
= & \left(K_{2}^{\prime}-D_{t}\right)^{k} K_{n}[0] \tag{44}\\
= & \left(K_{2}^{\prime}-D_{t}\right)^{k} g_{n}(y) .
\end{align*}
$$

For $k=n+2$, the condition reads

$$
\begin{equation*}
K_{n x}[n+1]=K_{2 x}^{\prime} K_{n}[n+1] \tag{45}
\end{equation*}
$$

which means $K_{n}|n+1|$ itself should be a time-independent symmetry.
Now the only thing left to do is to substitute

$$
\begin{equation*}
K_{n}[n+1]=\left(K_{2 r}^{\prime}-D_{t}\right)^{n+1} g_{n}(y) \tag{46}
\end{equation*}
$$

into (45) to determine the only unknown function $g_{n}(y)$. However, because we know that the solution for this problem exists from the discussions of (23), and also that the solution can only possess the form (37), here we would like to fix $g_{n}(y)$ in a simple way.

If we say that x has a dimension $[x]$, then from the KP equation (2) we know that y, t and u should have the dimensions $[x]^{2},[x]^{3}$ and $[x]^{-2}$ respectively. From equations (13)-(18), one can see that $K_{n}(h) / h$ must have dimension $[x]^{-n-3}$. That is to say, $h^{(n+1)} g_{n}(y) / h$ must have dimension $[x]^{-n-3}$. Accordingly, the only possible form for $g_{n}(y)$ is

$$
\begin{equation*}
g_{n}(y)=A_{n} y^{n}, \tag{47}
\end{equation*}
$$

where A_{n} is a constant which is not very important because the symmetry equation (11) is linear.

Finally, we obtain the constructive formula for $K_{n}(h)$:

$$
\begin{equation*}
K_{n}(h)=\left(1 /\left(2 n!3^{n+1}\right)\right) \sum_{k=0}^{n+1} h^{(n+1-k)}\left(K_{2}^{\prime}-D_{t}\right)^{k} y^{n} \tag{48}
\end{equation*}
$$

where the constant A_{n} has been fixed as $\left(1 /\left(2 n!3^{n+1}\right)\right)$ so that $K_{n}(h)$ given by (48) and that determined by (18) are the same.

Starting from the general symmetry expression (48), we can obtain not only the explicit expressions of the commuting symmetries

$$
\begin{equation*}
K_{n}=K_{n}[n+1]=\left(1 /\left(2 n!3^{n+1}\right)\right)\left(K_{2}^{\prime}-D_{t}\right)^{n+1} y^{n} \tag{49}
\end{equation*}
$$

but also the explicit expressions of the time-independent mastersymmetries of degree k :

$$
\begin{equation*}
\tau_{k, n}=\left(1 /\left(2 n!3^{n+1}\right)\right)\left(K_{2}^{\prime}-D_{t}\right)^{n+1-k} y^{n} \quad(k=1,2, \ldots, n+1) . \tag{50}
\end{equation*}
$$

By means of (50), the general time-dependent symmetries $K_{n}(h)$ for the KP equation can be written as

$$
\begin{equation*}
K_{n}(h)=\sum_{k=0}^{n+1} h^{(k)} \tau_{k, n} \tag{51}
\end{equation*}
$$

with $\tau_{0, R}=K_{n}$.
In concrete calculations we find that if we take $K_{n}(h)$ to have the form (48), the definition equation (7) for D_{x}^{-1} can be used. Actually, the integral functions in (17) or (18) have been fixed because we have fixed $K_{n}[0]$ for all $n \geqslant 0$.

4. Summary and discussions

In this paper, after extending the mastersymmetry method [7] for the KP equation, we have obtained an infinite set of time-dependent symmetries in which an arbitrary function of t has been included for every high-order symmetry. All the symmetries known can be considered as special cases. Though the time-independent symmetries can be obtained recursively in two different way by means of two recursion operators
[14], the expressions for these commuting symmetries are still quite complicated. We have given an explicit simple expression for the generalized time-dependent symmetries with an arbitrary function of t. The time-independent symmetries and mastersymmetries of degree $k(k=0,1,2, \ldots, n+1)$ can all be obtained from this expression.

Together, these infinitely many symmetries constitute an infinite-dimensional Lie algebra. The infinite-dimensional Lie algebra with three arbitrary functions of t obtained by Schwartz [12] and discussed by David et al [13] is only a subalgebra of that given here. The algebra constituted by infinitely many generalized symmetries includes infinitely many arbitrary functions of t because all the functions in high-order symmetries can be independent of each other. Using the subalgebra with three arbitrary functions of t, David et al [13] obtained three types of solutions of the KP equation with three arbitrary functions. Actually, it is known that there exist some types of solutions with more than three arbitrary functions of t for the KP equation [15, 16]. Furthermore, the fact that infinitely many arbitrary functions of t exist for the symmetry group of the KP equation means that there may be some types of solutions with infinitely many arbitrary functions of t. How to get this type of solution by using the generalized symmetry group of the KP equation is worthy of further study. As an explanation, we can write the KP equation (2) in a generalized equivalent form

$$
\begin{equation*}
u_{1}=6 u u_{x}-u_{x x x}-3 D_{x}^{-t} u_{y y}+f(y, t) \tag{52}
\end{equation*}
$$

where $f(y, t)$ is an arbitrary function of y and t. It is obvious that an arbitrary function of two variables may be written as a function with infinitely many arbitrary functions of one variable, say,

$$
\begin{equation*}
f(y, t)=\sum_{n=-\infty}^{+\infty} A_{n}(t) y^{n} \tag{53}
\end{equation*}
$$

where $A_{n}(t), n=0, \pm 1, \pm 2, \ldots$ are arbitrary functions of t.
In [6] the complete Virasoro algebra constituted by the time-dependent symmetries for various $1+1$-dimentional integrable models has been obtained. However, the Virasoro algebra of the KP equation we obtained is incomplete because equation (22) holds only for $n, m=0,1,2, \ldots$ How to find another 'half' hierarchy for $\tau_{n}(n=-1,-2, \ldots)$, or even whether there exists such a negative hierarchy is still unknown. Various other interesting problems about the symmetries and the symmetry algebra of the KP equation, like the conservation laws, are also worthy of further investigation. Similar to the KP equation, there may exist generalized symmetries and infinite-dimensional Lie algebras for other $2+1$-dimensional integrable models. For instance, the generalized symmetries and infinite-dimensional Lie algebras of the integrable dispersive long wave equations in two spaces have been reported in [17].

Acknowledgments

The work was supported by the Natural Science Foundation of Zhejiang Province and the National Natural Science Foundation of China. The author would like to thank professors G-j Ni, Z-y Zhu, K Wu, X-b Hu and Q-p Liu for their helpful discussions.

References

[1] Miura R M, Gardner C S and Kruskal M D 1968 J. Math. Phys. 91204
Ablowitz M J and Segur H 1981 Solitons and Inverse Scattering Transformation (Philadelphia: SIAM)
Novikov S, Manakov S, Pítaevskii L and Zhakharov V E 1981 Theory of Solitons (New York: Consultants Bureau)
〔2] Olver P J 1977 J. Math. Phys. 18 1212; 1980 Math. Proc. Camb. Phil. Soc. 88 71; 1990 Phys, Lett. 148A 177; 1986 Application of Lie Group to Differential equations Graduate texts in Mathematica (Berlin: Springer)
Bluman Q W and Kumei S 1989 Symmetries and Differential Equations (Berlin: Springer)
[3] Fuchssteiner B 1981 Nonlinear Analysis TMA3, 849, Prog. Theor. Phys. 65861 Fokas A S, Fuchssteiner B 1981 Phys. Lett. 86A 341
[4] Chen H H, Lee Y C and Lin J E 1983 Phys. Lett. 91A 381; 1987 Physica 26D 165
[5] Gu C H, Guo B L, Li Y S, Cao C W, Tian C, Tu G Z, Hu H S, Guo B Y and Ge M L 1990 Soliton Theory and its Application (Zhejiang Publishing House of Science and Technology) pp. 216-267 Li Y-s and Zhu G-c 1990 J. Phys. A: Math. Gen. 232707
Tian C and Zhang Y-j 1990 J. Phys. A: Math. Gen. 232867
Hu X-b and Li Y 1990 Northeastern Math. J. 6101
[6] Lou S-y 1993 J. Math. Phys. in press; 1993 Phys. Lett. 1754A 23; 1993 Phys. Lett. 302B 261
[7] Fuchssteiner B 1983 Prog. Theor. Phys. 701508
[8] Gardner C S 1971 J. Math. Phys. 121548
[9] Zakharov V E and Schulman E i 1980 Physica 1D 192
Lin J E and Chen H H 1982 Phys. Lett. 89A 163
[10] Chen H H, Lee Y C and Lin J E 1985 Advances in Nonlinear Wave, vol. 2, ed Debnath L (New York: Pitman) p. 233; 1983 Physica 9D 439
[11] Chen H H, Lee Y C and Zhu G C 1984 Symmetries and Lie algebra for the Kadomtsev-Petviashvili equation, University of Maryland Plasma. Preprint UMLPF No 85-016 Chen H H and Lin J E 1987 J. Math. Phys. 28347
[12] Schwarz F 1982 J. Phys. Soc. Jpn 512387
[13] David D, Kamran N, Levi D and Winternitz P 1986 J. Math. Phys. 271225
[14] Oevel W and Fuchssteiner B 1982 Phys. Lett. 88A 323
Fokas A S and Santini P M 1988 J. Math. Phys. 29604
[15] Lou S-y 1990 J. Phys. A: Math. Gen. 23 L649
Lou S-y and Ni G-j 1991 Commun. Theor. Phys. 15465
Lou Sen-vue, Ruan H-v, Chen D-f and Chen W-z 1991 J. Phys. A: Math. Gen. 241455
[16] Clarkson P A and Winternitz P 1991 Physica 49D 257
[17] Lou S-y 1993 Symmetries and algebras of the integrable dispersive long wave equations in two space dimensions. Preprint NBN-IMP 5/93

