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Abstract. Generalized symmetries with arbitary functions of time I for the well known 
2 t I-dimensional integrable model, Kadomtsev-PetviashviLi (KP) equation, are found by 
means of the extended mastersymmetry approach. Then an explicit and simple constmc- 
live formula for the symmetries of the KP equation is derived directly from the symmetry 
definition equation, without using wmplicated recursion operators. AU the known 
symmetries appear as special cases of those obtained in this paper. The general infinite- 
dimensional Lie algebra constituted by these symmetries is also given. 

1. Introduction 

In the past two decades, the discovery of soliton solutions for certain 1+ 
1-dimensional nonlinear evolution equations with physical applications has aroused 
great interest and attention among physists and mathematicians [l]. One of the 
important developments is that nonlinear models such as the Kdv and Liouville 
equations, in general possess many sets of infinitely many symmetries 12-61, There 
exist different types of effective methods to obtain the symmetries of an evolution 
equation. One of them uses Lie algebras of mastersymmetries to obtain all commuting 
symmetries. 

Fuchssteiner used mastersymmetries to get both the time-independent and time- 
dependent symmetries of the Kadomtsev-Petviashvili (KP) equation [7]. In this paper, 
we modify the mastersymmetry method of 171 to give the more general symmetries of 
the KP equation and the infinite dimensional Lie algebra constructed by the genera- 
lized symmetries. Section 3 is devoted to presenting an explicit expression for all the 
symmetries obtained in section 2. Section 4 is a summary and discussion. 

2. Symmetries and Lie algebra of the KP equation 

Fuchssteiner [7] pointed out that 
G,-y’ 

is a mastersymmetry of degree three for the KP equation 

U,= (~uu, - u ~ ~ ) ~  - 3 ~ ,  3 Kz, 

t Mailing address. 
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because 

[[[G, &I, K~I,&I=[IGZ, &I. &]=[GI, &1=108K2 (3) 
where the commutator [A, B] is defined by 

a 
[A,  B]=-[A(u a€ +€&U)) - B ( u + E A ( u ) ) ] ~ ~ ~ ~ ) = A ' B -  B'A (4) 

and 

K z =  D ; ' K ~ = ~ U U , - U , - ~ D ; ' U ~ ~  

with 

(6)  

being the inverse of the differential operator D, =a/ax. Applying to a constant C, he 
defined the Lie algebraic meaning of 0;' by 

D;'C=xC. (7) 
However, in order to get the most general results, we should define the 0;' more 
generally as 

D;'C=xC+ f ( v , t ) ,  (8) 
where f is an arbitary function of y and f. 

Now we begin the calculation with the known seed symmetry Kz and the 
mastersymmetry G3=yz as in [7], but with the definition (7) for 0;' replaced by (8). 
Explicit computation yields 

G2= [Gj, Kz]= -6~,$+ &:+ f ( y ,  f), 
GI= [Gz, Kz]=-36(~~ ,+2rC +2yuY) - 6 f ~ , +  3fyrr+fi(y, 1). (9) 

Finally, we have 

[GI, K ~ I = ~ O ~ ~ Z - ~ ~ I ~ ~ + ~ , ( Y ,  f)-18(fyvXu,+2fyuy+2fyyu) +(9/2)fyyyyxZ+3fiy+ 

= 108K, + 0 0  (10) 
wheref,f, and& are three integral functions which should be fixed from the symmetry 
definition equation of the KP equation such that y z  is still a mastersymmetry of degree 
3 when D;' is given by (8). The symmetry definition equation of the KP reads 

U , =  [(6D?u - D:) - D']u=K;P Y (11) 
or equivalently 

U, = D p  = K ~ u  = (6D,u - D: - D;'D;)u 

where D, denotes the total r-derivative. 
Substituting U, given in (10) into (Il), we get a first generalized seed symmetry 

Ko(h) = h(f)u, + (1/6)h(f)  (13) 
with f l y = f = f 2 y = 0 ,  h=-6 f , ( t ) , f z= (1 /6 )h=  D,h/6 and h being an arbitrary function 
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of t .  When h = 1 ,  Ko(h) reduces to the known &(l) = KO = 4, corresponding to the 
x-translation. Now using the known symmetry [7]  

K3 4[4uuY + ~ U ~ D ; ' U ,  - D;'uyYy - urYy] 

and the generalized seed (13),  we obtain 

where h = f  and an integral function has been fixed as (1/18)hy such that K,(h)  
satisfies (11). K,(h)  is the generalization of the- known y-translation invariance 
K,(1)  = ICl = -2uy. Similarly 

K2(h)=(3/4)IK,cf) ,  K31 

Kl(h) (3/4)[Kocf) ,  K3] = -%U,+ (1/3)l?yu,+ (1/18)hy. (14) 

= -hu,-(2/3)hyuY- (1/3)kru,+(1/18)l iy '~,-  ( 2 / 3 ) h ~ - ( 1 / 1 8 ) h ~  

+ (1/108)ky2, ( h = f )  (15) 
and 

K , ( h ) = ( 3 / 4 ) [ K , ( f ) ,  K3] =hK3+ ( 1 / 3 ) h ( y ~ ~ ~ + 2 r ~ ~ + 4 D ~ ' ~ ~ + 3 y D ~ ' ~ ~ ~ - 6 y ~ , )  
- ( 1 / 9 ) h ( ~ ~ ~ , + 2 ~ ~ + ~ ~ ~ ~ )  - ( 1 / 1 6 2 ) h ( 3 ~ y - y ~ ~ , )  

+ ( 1 / 9 7 2 p y 3 ( h = f ) .  (16) 
K2(h) is the generalization of the I-translation invariance, K2(1) = K z =  -U,, while 
K,(h) is the generalization of the known time independent symmetry K3(1)=K3.  

Finally, by means of the known time-independent symmetries K. 171 and genera- 
l i e d  symmetry K,(h) or K3(h), we obtain all the generalizations of K,: 

K n ( h ) = ( 3 / ( n +  1 ) ) 1 K 2 ( f ) , K  (17) 

= ( 3 / n ) [ & ( f ) ,  Kn-31 (f=h). (18) 

K3(t)=tK~+(1/3)(yu,+2r~y+4D~'~y+3yD~'~yy-6y~,)~fK~+ rt.3 (19) 

It is interesting that when we take h = f for K3(h),  then the generalized symmetry 
K,(h) reduces to the known time-dependent (linear in f) symmetry 

where q 3  is just the mastersymmetry given in ref. [7] (up to a constant factor). Then 
(18) reduces to the known results: 

K n ( l )  = K n = ( 3 / n ) [ K 3 ( f ) ,  & - I ]  = (3 /n ) [ t1 ,3 ,  Kn-11. (20) 
After finishing the detailed calculations we can see that the generalized symmetries 
obtained here constitute also a closed infinite dimensional Lie algebra 

[K(h). L(h2) l  = (113)K.+,-,((m+l)filh,-(n+ 1 ) k ) .  (21) 
Here we would like to present some special cases of (21) to demonstrate its 
correctness, instead of giving tedious concrete verification. 

(1) h = 1 .  In this special case, all the K,(h) reduce to the known symmetries [8]  
K. = &(I) which can be derived from the conserved quantities [9]  that do not depend 
explicitly on the variables x ,  y and t. All of these quantities commute. 

(2) h = t .  In this case, all the symmetries Kn(f)=rn are just the so-called 'new 
symmetries' or 'r symmetries' that depend explicitly on the variables x ,  y and r. All of 
these types of symmetries constitute a Virasoro algebra 

[Kn(r) ,Km(r) l=[tn. ,  t ~ 1 = ( 1 / 3 ) ( ~ - n ) r , ~ , - ~ , n , m > 0 ) .  (22) 
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(3) h(t) = t", (ma 1). This type of solutions is also known in the literatures [7,11]. 
The algebra (21) is reduced to 

[K.(t'), Km(t')] =(1/3)[r(m+ 1)-s(n+ l)]Kn+,,,-z(f'+s-') (a, m 3  0, r, sa 1) (23) 
which was also given in [ll]. In fact, it is quite natural to extend (23) to (21). If we 
restrict h(t) to any  analytical function then writing h(f )  in Taylor series form, one can 
prove (21) from (23) because (11) is linear. 

(4) Let 

and 
KzCf)=X(f)= -fu,- (2/3)fy~,-(113)f~~,+ (1/18)fi*~~-(2/3)f~- (1118)jx 

t (l/lospy* (26) 

IZ(h1 ),Z(h,)I= 0 (27) 
IZ(h), %)I= 0 (W 
[yk,) ,  YWI= (2/3)~&1lg~-g,g,) (29) 
[yk, XLf)l=(1~3)Vkf-  2fg) (30) 
[Z(h) ,  x(nl = ( W V h f - f h )  (31) 
[ m i  ) 3  Wdl= Xfdi -ff* ). (32) 

where h, g andfare three arbitary functions of f. Then we get an infinite-dimensional 
subalgebra of the w equation from eq. (21): 

Using a REDUCE package, this subalgebra was first given by Schwarz [12] where 
XU),  Y(g) and Z(h) were expressed as the following totally equivalent forms 

a a 
Z(h)= h(f)-- ax (1/6)h- au (33) 

a a a 
Y(g) = 2g(r) -+ (1/3)gy -- (1/18)gy - aY ax au (34) 

a a a 
at ay ax 

X ( f )  = - f ( f )  --(2/3)fy -- [(1/3)f~- (1118)fYl- 

a + [(2/3)fu+(1118)fx- ( i / ios j jyz~  au (35) 

and the corresponding Lie product is charged as 
[A, B] =AB - EA. 

More details of this algebra have been studied in [13]. Three general types of 
similarity solutions of the KP equation were obtained using this subalgebra [13]. 

Because the integral functions which should be fixed have been included in every 
high-order symmetry, to obtain the concrete form of K,(h) from (17) or (18) is still 
quite difficult. This is especially true for the integration functions, though they 
coincide with that obtained by [ll] because they have to be determined directly from 
the definition equation (11). We would like to give a simple and explicit formula to 
obtain K,(h). 
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3, A constructable formula for the symmetries of the KP equation 

From equations (17) (or (18)) and (11) (or (12)), we know that the h (and its 
derivatives) dependence for K.(h) must be linear because (11) is linear in U, equation 
(17) is linear in h ( = f )  and h is an arbitrary function oft. Accordingly, we know that 
K.(h) can only have the form 

4391 

" i l  

K.(h) = h'"+'-*)K.[k] (37) 
k=O 

where h")= (Dfh(r)), K.lk((k=O, 1,. . . n+ 1) are functions of n,  y. U and its deriva- 
tives, but are not time-dependent explicitly. The explicit time dependence of K.(h) 
has been separated out in h'"+l-". 

Substituting (37) into the left side of the definition equation (11) directly, we have 
" + I  " + I  

K,(k) = J k ]  + h'"+l-k)K,,[k] k'"+2"'K 
k = O  1 - 0  

"C2 

while the right-hand side of (11) now becomes 

Because h is an arbitrary function o f t ,  comparing the coefficients of h("+'-*) of (38) 
and (39) we have 

KJO] = 0 (40) 

KnPI =&CY) (41) 

for k = 0 ,  which means 

is not only r-independent but also x- (and then U - )  independent. 
For k =  1,2, . . . , n + 1, we have 

K , [ k ] + K , , [ k - l ] = K , K , [ k - I ]  

K,[k]=(KL-D,D,)K,[k-  11. 
Solving (43) recursively yields 

K.[k]=D;'(K;,-D,D,)K,[k- 4 
= ( K I - D , ) K J k -  I] 
= (Ki - D,)*K.[k - 21 

=(Kk - D,)'KJO] 

= (K6 - DJkdY). 

K,,[n + 11 = KtKn[n t 11 
For k =It + 2, the condition reads 
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which means K./n +ll itself should be a time-independent symmetry. 
Now the only thing left to do is to substitute 

KJn + 1 J = (Kh - D,)"'Ig,(y) (46) 
into (45) to determine the only unknown function g,O.). However, because we know 
that the solution for this problem exists from the discussions of (23), and also that the 
solution can only possess the form (37), here we would like to fixg,(y) in a simple way. 

If we say that x has a dimension [ x ] ,  then from the KP equation (2) we know that y, 
f and U should have the dimensions [x]', [XI' and [XI-' respectively. From equations 
(13)-(18), one can see that K.(h)lh must have dimension [x]-"-'. That is to say, 
h("+')g,(y)/h must have dimension [x]-"-'. Accordingly, the only possible form for 
g.cv) is 

g.O.)=Ad", (47) 
where A, is a constant which is not very important because the symmetry equation 
(11) is linear. 

Finally, we obtain the constructive formula for K.(h): 
" + I  

K,(h)=(1/(2n!3"+')) 2 h("+'-k)(K;-D,)ky" 
k=O 

where the constant A, has been fixed as (11(2n!3"+')) so that K.(h) given by (48) and 
that determined by (18) are the same. 

Starting from the general symmetry expression (48). we can obtain not only the 
explicit expressions of the commuting symmetries 

K.= K,[n + 11 = (11(2n!3"+'))(K;- D,)"+'y" (49) 
but also the explicit expressions of the time-independent mastersymmetries of degree 
k 

.x,.=(1/(2n!3""))(K;-D,)"i'-Xy" (k=1 ,2  ,..., n4-1). (50) 

By means of (50), the general time-dependent symmetries K,(h) for the KP 
equation can be written as 

" + I  

K"(h) = 2 h'X'z,,. (51) 
k=Q 

with roo..=K.. 
In concrete calculations we find that if we take K,(h) to have the form (48), the 

definition equation (7) for 0;' can be used. Actually, the integral functions in (17) or 
(18) have been fixed because we have fixed KJO] for all n a O .  

4. Summary and discussions 

In this paper, after extending the mastersymmetry method [7] for the KP equation, we 
havs obtained an infinite set of time-dependent symmetries in which an arbitrary 
function of t has been included for every high-order symmetry. All the symmetries 
known can be considered as special cases. Though the time-independent symmetries 
can be obtained recursively in two different way by means of two recursion operators 
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1141, the expressions for these commuting symmetries are still quite complicated. We 
have given an explicit simple expression for the generalized time-dependent symme- 
tries with an arbitrary function o f t .  The time-independent symmetries and master- 
symmetries of degree k(k = 0, 1 , 2 ,  . . . , n + 1) can all be obtained from this expres- 
sion. 

Together, these infinitely many symmetries constitute an infinite-dimensional Lie 
algebra. The infinite-dimensional Lie algebra with three arbitrary functions of t 
obtained by Schwartz [12] and discussed by David et a1 [13] is only asubalgebra of that 
given here. The algebra constituted by infinitely many generalized symmetries 
includes infinitely many arbitrary functions o f t  because all the functions in high-order 
symmetries can be independent of each other. Using the subalgebra with three 
arbitrary functions of I. David et a2 1131 obtained three types of solutions of the KP 
equation with three arbitrary functions. Actually, it is known that there exist some 
types of solutions with more than three arbitrary functions o f t  for the KP equation 
115,161. Furthermore, the fact that infinitely many arbitrary functions oft  exist for the 
symmetry group of the KP equation means that there may be some types of solutions 
with infinitely many arbitrary functions oft. How to get this type of solution by using 
the generalized symmetry group of the KP equation is worthy of further study. As an 
explanation, we can write the KP equation (2) in a generalized equivalent form 

where fb, t)  is an arbitrary fu$ction of y and t .  It is obvious that an arbitrary function 
of two variables may be written as a function with infinitely many arbitrary functions 
of one variable, say, 

where A,(t), n = 0, f 1, rf: 2, . , . are arbitrary functions of 1. 
In [6] the complete Virasoro algebra constituted by the time-dependent symme- 

tries for various 1 + 1-dimentional integrable models has been obtained. However, the 
Virasoro algebra of the KP equation we obtained is incomplete because equation (22) 
holds only for n,m=O,  1, 2 , .  . . . How to find another 'half hierarchy for 
rn(n = -1, -2, . . .), or even whether there exists such a negative hierarchy is still 
unknown. Various other interesting problems about the symmetries and the symmetry 
algebra of the KP equation, like the conservation laws, are also worthy of further 
investigation. Similar to the KP equation, there may exist generalized symmetries and 
infinite-dimensional Lie algebras for other 2 + 1-dimensional integrable models. For 
instance. the generalized symmetries and infinite-dimensional Lie algebras of the 
integrable dispersive long wave equations in two spaces have been reported in [17]. 
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